برای جستجو در بین هزاران پایان نامه در موضوعات مختلف     

      و دانلود متن کامل آنها با فرمت ورد اینجا کلیک کنید     

 
دانلود پایان نامه

شکل (1-14) ساختار گیرنده بتا- آدرنرجیک تیمول، اتنول و پروپانول[24]
شکل (1-15) تصویر میکرووسکوپ الکترونی غشای نفوذپذیر یون اورانیل]33[
با وجودی که عمده پژوهش های جداسازی بر روی تهیه فاز های ساکن برای HPLC متمرکز شده است[25]، پلیمرهای قالب ملکول نیز برای تکنیک‎های تجزیه‎ای دیگری مورد استفاده قرار گرفته اند. یکی از کاربردهای مهم پلیمرهای قالب ملکول در استخراج فاز جامد است. انتخابگری ار پیش تعیین شده پلیمر‎‎‎‎‎های قالبی و داشتن انتخابگری بالای جاذب‎ها می‎تواند این سیستمها را بسیار کارا سازد. مواد استخراج فاز جامد قالب مولکولی توانایی خود را برا بهبود حساسیت برای آنالیز نمونه‎های زیست محیطی مقادیر بسیارکم از طریق استخراج حجم‎های بزرگ نمونه نشان داده است. الکتروفورز کاپیلاری با استفاده از فاز ساکن قالب مولکولی و رانش فاز متحرک الکترواسمزی نیز بررسی شده‎اند[34]. این روش پتانسیل را دارد که عملکرد بهتری نسبت به HPLC داشته باشد و نیز مزیت به حداقل رسانی مصرف مواد شیمیایی به ویژه مولکول الگو را دارد. استفاده از غشاهای پلیمر قالب مولکولی برای انتقال مولکول‎ها زمینه تحقیقات وسیعی است. جداسازی برپایه غشاها بالقوه دارای کارایی بیشتر نسبت به تکنیکهای جداسازی رقیب است. کاربرد‎های بالقوه آن در صنایع جداسازی گازها، پتروشیمی و دارویی وجود دارد.
1-10-2- ساخت غشاء
استفاده از تکنولوژی پلیمر قالب مولکولی و یونی در ساخت غشاهای مختلف ازدیگر کاربردهای جدید آنها میباشد. غشاهای ساخته شده با این روش تمایل به جذب بالاتر و انتخابگری بالاتر در نفوذ مولکولها و یونهای هدف نشان میدهند. اولین غشاء با استفاده از پلیمر قالب یونی در سال 2001 به وسیله کیماروو همکارانش جهت جداسازی یون اورانیل از طریق پلیمریزاسیون رسوبی ساخته شد[34]. شکل (1-15) تصویر میکرووسکوپ الکترونی غشای نفوذپذیر یون اورانیل را به خوبی نشان میدهد.
1-10-3- ساخت حسگر یا الکترود
ساخت حسگرهای شیمیایی، الکتروشیمیایی و زیستی از جمله کاربردهای جدید پلیمرهای قالب مولکولی و یونی در تشخیصهای پزشکی، تجزیه نمونههای محیطی و غذایی و کنترل آلودگی میباشد. براساس نوع مبدل، حسگرها براساس خواص الکتروشیمیایی یا خواص طیف سنجی هستند. پلیمرهای قالبی با گستره وسیعی از انتقال دهندههای علائم پتانسیومتری و آمپرومتری ترکیب شدهاند. اولین الکترود یون گزین بر اساس تکنولوژی پلیمر قالب یونی و خواص الکتروشیمیایی جهت تشخیص یونهای کلسیم و منیزیم در سال1991به وسیله روساتزین و همکارانش ساخته شد که با روش پتانسیومتری این یونهای کلسیم و منیزیم با فاکتور گزینشپذیری به ترتیب 6 و7/1 تشخیص داده شدند[35] و اولین حسگر بر اساس تکنولوژی پلیمر قالب یونی و مبدل طیف سنجی (فلئورسانس) نیز در سال1997 به وسیله موری و همکارانش برای یون سرب ساخته شد[36].
بازنگری جدیدی، حسگرهای الکتروشیمیایی مبتنی بر پلیمرهای دارای قالب مولکولی را تحت پوشش قرار میدهد. بدین صورت که در طراحی این حسگرها درصدی از پلیمرهای قالب مولکولی به عنوان اصلاحگر اضافه میشود. حالا از این حسگر در محلول حاوی آنالیت مورد نظر که در ساخت پلیمر از آن استفاده شده و این پلیمر قابلیت جذب آن را دارد به عنوان الکترود شناساگر استفاده میشود. بر این اساس، شاهد کاربرد روزافزون این مواد پلیمری در حسگرهای الکتروشیمیایی (پتانسیومتری، آمپرومتری، هدایت سنجی) و همچنین حسگرهای نوری میباشیم.
پلیمرهای قالب ملکول به عنوان عناصر تشخیص در ابزارهای حسگرهای شیمیایی استفاده می‎شوند. حسگرهای زیستی از عنصر تشخیصی مثل یک آنتیبادی یا آنزیم به همراه یک مبدل استفاده می‎برند. یک سیگنال شیمیایی حاصله از پیوند آنالیت به گیرنده که بعداً به یک سیگنال الکتریکی یا نوری تبدیل میشود را بتواند رصد شود. در بسیاری موارد، توسعه اجزاء تشخیص دهنده فراتر از روشهای تبدیل سیگنال نظیر نوری، مقاومتی، موج اکوستیک سطحی یا اندازه‎گیری ظرفیت الکتریکی قرار می‎گیرد. پتانسیل قابل توجهی برای ابزارهای حسگر شیمیایی چنانچه اجزاء تشخیص دهنده موجود باشند.
مزیت‎های بالقوه‎ای که با استفاده از پلیمرهای قالب ملکولی به عنوان عنصرتشخیص دهنده به جای گیرنده‎های بیولوژیکی حاصل می‎شود. از آنجاییکه پلیمرهای قالب ملکولی گیرنده‎هایی مصنوعی‎اند، ذخیره‎ای مجازی از آنالیت‎ها دارند. بعلاوه، پلیمرهای قالب ملکولی در مقابل شرایط نامساعد پایدارند که قابل قیاس با حسگر های برپایه بیولوژیکی نیست . مضافا، قابلیت آنها برای بکارگیری عنصر سیگنال دهنده، نظیر میله فلوئورسانس، که درمجاورت سایت پیوندی می‎توان در سنسور استفاده کرد. ممکن است سنسورهایی با آرایهای از پلیمرهای قالبی برای تعدادی از آنالیت‎ها جهت ساخت یک سنسور تکی که قادر به شناسایی مواد متعدد باشد، به کار برد. استفاده از اسپکتروسکپی لومینسانس ترکیب شده با فایبر اپتیک سیستم‎هایی برای کاربرد حسگرها مهیا میکند. استفاده از پلیمر قالب‎زنی مولکولی در ترکیب با این سیستم می‎تواند انتخابگری شیمیایی را به این نوع حسگرها اضافه کند. این تکنولوژی برای تشخیص انواع زیادی از ترکیبات شامل عوامل عصبی، علف کش، مولکولهای دارویی[36] و بیومولکولها به کار می‎رود[37]. مسباخ و همکاران با استفاده از یک ابزار حسگر الیاف نوری بر پایه پلیمرهای قالب ملکولی یک آمینو اسید فلوئورسانسنشان (دانسیل-ال-فنیل آلانین) را نشان دادند. این مواد با استفاده از متاکرلیک اسید و 2- وینیلپیریدین بعنوان مونومر ها و اتیلنگلیکولدیمتاکریلات به عنوان مونومر شبکه کننده تهیه شدند. یک سیستم ساخته شد که درآن ذرات پلیمر در مقابل نوک الیاف نوری با استفاده از یک تور نایلون نگه داشته شد[39]
1-10-4- گیرنده های مصنوعی
عیارسنج پیوندی برای تعیین مقادیر کم ترکیبات سرم خون و سایر سیستمها و برای غربال کردن ترکیبات متمایل به یک گیرنده بکار می‎روند. عیار سنج از این نوع به یک گیرنده اختصاصی، اغلب یک آنتیبادی که اختصاصاً به مولکول مورد بررسی نیاز دارد. آنتیبادیها غالباً خواص بسیار عالی تشخیصی برای مولکول متقابل (آنتی ژن) نشان میدهد. اما، کاربرد آنها در شرایط سخت بخاطر حساسیت محدود آن است وآنچه که می‎توان در نظر داشت هزینه بالای تولید آن است. آنتی بادیهای مصنوعی و گیرندههایی که بروش قالب زنی مولکولی تهیه میشوند از نظر تئوری مکمل جاذب همتاهای طبیعیشان هستند . چندین بررسی نشان داده که پلیمرهای قالب مولکولی می‎توانند بعنوان نسخههای مصنوعی آنتی بادی‎ها عمل کنند و بعنوان اجزای در ایمنی سنجی بکار روند. این بررسی‎ها با استفاده ازروش‎های رادیولیگاند پیوندی و روش پیوند پیمانه‎ای مقایسه شده‎اند و اولین کاربرد پلیمر قالب مولکولی به عنوان جزء تشخیص در یک عیارسنج لیگاند پیوندی رادیو نشان برای تشخیص دیازپام وتئوفیلین درسرم انسانی بود. نتاج حاصله قابل مقایسه با روش تثبیت شده برای این داروها بود. روش بکار گرفته برای این تحقیق استفاده از ممانعت پیوند رادیونشان به آنالیت در سرم بود. مقدار رادیولیگاند متصل به پلیمر به صورت عکس متناسب با غلظت آنالیت در سرم بود[39].
1-10-5- کاتالیستها
یکی از چالش برانگیزترین کاربردهای پلیمر قالب مولکولی ساخت کاتالیستهای طراحی شده است. به دلیل قابلیت آرایش دادن گروهای عاملی در ماتریس پلیمرهای قالب مولکولی خود را وارد این کاربرد کرده‎اند. روشهای تهیه پلیمرهای قالب مولکولی کاتالیستی شامل: (1) استفاده از یک الگوکه گروه‎های کاتالیست داخل سایت های پیوندی (2) استفاده از حالت گذرا مشابه مولکول الگو (3) استفاده از کمپلکس‎های کئوردینه برا ی تاثیرگذاری روی واکنش کاتالیستی.
1-11- عنصر نیکل[41]
این عنصر کاربردهای فراوانی در طبیعت دارد و برای ساخت فولاد ضدزنگ و دیگر آلیاژهای ضد زنگ و خوردگی مثل اینوار و مانل که الیاژى از نیکل و کبالت که در برابر خوردگى مقاوم است به کار میرود. برای ساخت لولههای نیکلی و مسی و همینطور برای نمکزدایی گیاهان و تبدیل آب شور به آب مایع استفاده میشود. نیکل استفادههای فراوانی برای ساخت سکهها و فولاد نیکلی برای زرهها و کلیدها کاربرد دارد و همینطور از نیکل میتوان آلیاژهای نیکروم و پرمالوی و آلیاژی از مس را تهیه کرد. از نیکل برای ساخت شیشههای به رنگ سبز استفاده میشود. صفحات نیکلی میتواند نقش محافظت کننده برای دیگر فلزات را داشته باشد. نیکل همچنین کاتالیزوری برای هیدروژندار کردن روغنهای گیاهی است. همچنین صنعت سرامیک و ساخت آلیاژی از آهن و نیکل که خاصیت مغناطیسی دارد و باتری های قوی ادیسون کاربرد دارد. از ترکیبات مهم نیکل میتوان سولفات و آکسید را نام برد. نیکل طبیعی مخلوطی از 5 ایزوتوپ پایدار است. همچنین 9 ایزوتوپ ناپایدار دیگر نیز شناخته شده است. مقدارنیکل در طبیعت بسیار کم است. انسان در زمینه های مختلف از نیکل استفاده میکند. یکی از عمدهترین کاربردهای نیکل، در صنعت فولاد است. از نیکل به عنوان یکی از اجزا سازنده فولاد و سایر محصولات فلزی استفاده میشود. حتی از نیکل در جواهرات هم استفاده میشود. مقدار اندک نیکل برای انسان ضروری است اما اگر مقدار آن افزایش یابد، برای سلامت انسان خطرناک است. مصرف بالای نیکل احتمال مبتلا شدن به سرطان ریه، سرطان بینی، سرطان حنجره و سرطان پروستات را افزایش میدهد. پس از این که فرد در معرض گاز نیکل قرار گرفت، دچار کسالت و سرگیجه میشود. آب آوردن ریهها مشکلات تنفسی کاهش توانایی تولید مثل، آسم، برونشیت مزمن، حساسیتهایی از قبیل خارش پوست (به خصوص در هنگام استفاده از جواهرات) نارسایی قلبی از دیگر عوارض آن میباشد. از لحاظ تقسیم بندی برنامه سم شناسی ملی آمریکا، نیکل و ترکیبات آن جز عوامل سرطانزا محسوب میشوند و از نظر طبقه بندی آژانس بین المللی تحقیقات سرطان ترکیبات نیکل در گروه یک قرار میگیرند. گروه یک شامل عناصری میباشد که شواهد کافی در مورد سرطانزایی آنها وجود دارد. در این تقسیمبندی عنصر نیکل در گروه 2B قرار دارد. گروه 2B عناصری هستند که ممکن است در انسان سرطان ایجاد کنند. کارخانهها و سوزاندن زبالهها دو عامل اصلی در تولید نیکل و ورود آن به هوا میباشند. مقدار نیکلی که در هوا وجود دارد به مراتب از نیکل موجود در زمین بیشتر است. مدت زمان از بین رفتن نیکل موجود در هوا زیاد است. زمانیکه هرزآبها جریان پیدا میکنند، مقداری نیکل را وارد آبهای سطحی میکنند. بخش اعظم ترکیبات نیکل در طبیعت جذب ذرات خاک و رسوبات شده و در نهایت به صورت غیر متحرک در میآیند. در زمینهای اسیدی نیکل بسیار متحرک میشود و معمولاً در آبهای زیرزمینی شسته میشود. در حال حاضر دانشمندان میدانند که غلظت بالای نیکل در خاکهای ماسهای به گیاهان صدمه میزند و همچنین غلظت بالای نیکل در آبهای سطحی سبب کاهش تعداد و رشد جلبکها میشود. رشد موجودات ذره بینی نیز در حضور نیکل کاهش پیدا میکند، اما معمولاً با گذشت زمان در برابر نیکل مقاوم میشوند. مقدار اندک نیکل باید در غذای جانوران وجود داشته باشد. اما زمانی که مقدار نیکل از حد مجاز خود فراتر رود، میتواند برای جانوران مضر و خطرناک باشد. جانورانی که در نزدیکی پالایشگاه زندگی میکنند، بر اثر دریافت مقدار زیاد نیکل به انواع مختلف سرطان مبتلا میشوند. از آنجایی که نیکل در بافتهای گیاهی و جانوری نمیتواند تجمع پیدا کند، اثری در زنجیره غذایی ندارد.
1-12- مروری بر کارهای گذشته
در سال 2004 ارسوز و همکارانش با استفاده از پلیمرهای قالب یونی سنتز شده در استخراج فاز جامد به روش FAAS یونهای نیکل را در نمونههای زیستی و غذای پیشتغلیظ کردند. که حد تشخیص این روش 3/0 میکروگرم بر لیتر گزارش شده است[42].
در سال 2006 چانگ و همکارانش بااستفاده از جاذب سیلیکاژل سطحی در استخراج فاز جامد به روش ICP-AES یونهای نیکل را در نمونههای آبی اندازه گیری کردند. که حد تشخیص این روش 16/0 میکروگرم بر لیتر گزارش شده است[43].
در سال 2008 رومانی و همکارانش با استفاده از پلیمرهای قالب یونی سنتز شده در استخراج فاز جامد یونهای نیکل را از نمونههای آب شور جداسازی کردند. که این کار با روش ICP-OES صورت پذیرفت. حد تشخیص این روش3/0 میکروگرم بر لیتر گزارش شده است[44].
در سال 2008 سراجی و همکارانش با استفاده از پلیمرهای قالب یونی سنتز شده استخراج گزینش¬پذیر فاز جامد یونهای نیکل را در نمونههای آبی انجام دادند. حد تشخیص این روش 2/0 میکروگرم بر لیتر گزارش شده است[45].
دسته بندی : علمی